
Profiling Hyperscale Big Data Processing
Abraham Gonzalez

abe.gonzalez@berkeley.edu
Google, UC Berkeley
Berkeley, CA, USA

Aasheesh Kolli
aasheesh@google.com

Google
Mountain View, CA, USA

Samira Khan
samirakhan@google.com

Google
Mountain View, CA, USA

Sihang Liu∗
sihangliu@uwaterloo.ca
University of Waterloo
Waterloo, ON, CAN

Vidushi Dadu
vidushid@google.com

Google
Mountain View, CA, USA

Sagar Karandikar
sagark@eecs.berkeley.edu

UC Berkeley, Google
Berkeley, CA, USA

Jichuan Chang
jichuan@google.com

Google
Mountain View, CA, USA

Krste Asanović
krste@berkeley.edu

UC Berkeley
Berkeley, CA, USA

Parthasarathy Ranganathan
partha.ranganathan@google.com

Google
Mountain View, CA, USA

ABSTRACT
Computing demand continues to grow exponentially, largely driven
by “big data” processing on hyperscale data stores. At the same
time, the slowdown in Moore’s law is leading the industry to em-
brace custom computing in large-scale systems. Taken together,
these trends motivate the need to characterize live production traf-
fic on these large data processing platforms and understand the
opportunity of acceleration at scale.

This paper addresses this key need. We characterize three impor-
tant production distributed database and data analytics platforms
at Google to identify key hardware acceleration opportunities and
perform a comprehensive limits study to understand the trade-offs
among various hardware acceleration strategies.

We observe that hyperscale data processing platforms spend sig-
nificant time on distributed storage and other remote work across
distributedworkers. Therefore, optimizing storage and remote work
in addition to compute acceleration is critical for these platforms.
We present a detailed breakdown of the compute-intensive func-
tions in these platforms and identify dominant key data operations
related to datacenter and systems taxes. We observe that no sin-
gle accelerator can provide a significant benefit but collectively, a
sea of accelerators, can accelerate many of these smaller platform-
specific functions. We demonstrate the potential gains of the sea
of accelerators proposal in a limits study and analytical model. We
perform a comprehensive study to understand the trade-offs be-
tween accelerator location (on-chip/off-chip) and invocation model
(synchronous/asynchronous). We propose and evaluate a chained
accelerator execution model where identified compute-intensive
functions are accelerated and pipelined to avoid invocation from

∗Work done while at Google.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ISCA ’23, June 17–21, 2023, Orlando, FL, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0095-8/23/06.
https://doi.org/10.1145/3579371.3589082

the core, achieving a 3x improvement over the baseline system
while nearly matching identical performance to an ideal fully asyn-
chronous execution model.

CCS CONCEPTS
• Information systems→Database query processing; •Com-
puter systems organization→ Cloud computing.

KEYWORDS
data analytics, databases, hyperscale computing, cloud computing,
warehouse-scale computing, profiling, accelerators, accelerator-
chaining

ACM Reference Format:
Abraham Gonzalez, Aasheesh Kolli, Samira Khan, Sihang Liu, Vidushi Dadu,
Sagar Karandikar, Jichuan Chang, Krste Asanović, and Parthasarathy Ran-
ganathan. 2023. Profiling Hyperscale Big Data Processing. In Proceedings of
the 50th Annual International Symposium on Computer Architecture (ISCA
’23), June 17–21, 2023, Orlando, FL, USA. ACM, New York, NY, USA, 16 pages.
https://doi.org/10.1145/3579371.3589082

1 INTRODUCTION
Growing volumes of data are causing demand for computing to
increase at phenomenal rates. More than 2.5 quintillion bytes of data
are expected to be generated per day throughout the world [35]. The
global “data sphere” is forecast to be greater than 175 zettabytes
and commercial big data solutions are growing in capacity and
features to satisfy this demand [3]. This growth of data-centric
computing is exemplified by the growing computing needed for
large databases, data warehouses, and data lakes in hyperscaler and
cloud companies (e.g., Google, Amazon, Microsoft, and Meta).

At the same time, Moore’s law is slowing down, stressing tradi-
tional assumptions around cheaper and faster systems every year.
This trend has led to new solutions that consider the entire data
center as a computer (warehouse-scale computing [28, 56]) as well
as innovative new custom silicon [5, 7, 27, 30, 45]. Underpinning
both approaches is a deep understanding of key workload behavior
at scale, allowing for more vertically integrated system designs.

https://doi.org/10.1145/3579371.3589082
https://doi.org/10.1145/3579371.3589082

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Gonzalez, et al.

Frontend Client

WorkersWorkersWorkers

Dist.
FS

Dist.
Cache

Access Data

Read/Write/Commit

Region 1

WorkersWorkersWorkers

Dist.
FS

Dist.
Cache

Region N

… Access Data

(a) Spanner

Frontend Client

Read/Write

WorkersWorkersWorkers
WorkersWorkersWorkers

WorkersWorkersWorkers

Get Metadata
Write log /
Read Data Compaction

Dist.
FS

(b) BigTable

Frontend Client

Request

Workers

Query
Master

Metadata
Server

Stage 1

Dist.
TX DB

Dist.
Shuffle

Dist.
Shuffle

Access
Metadata

WorkersWorkers

Stage 2 Stage N

Access Data

Dist.
FS

Response

(c) BigQuery

Figure 1: Google Big Data Processing Architectures

However, despite several prior studies on data processing plat-
forms [19, 28, 40, 44, 54–56, 66], there is a lack of research and
deep quantitative information on hyperscale big data processing
platforms, including their behavior on real-world production traffic
and corresponding opportunities for hardware acceleration.

Addressing this, we present, to the best of our knowledge, the
first large-scale profiling study of hyperscale big data processing
platforms at Google. We contribute the following:

• We characterize three key types of production big data pro-
cessing platforms serving live traffic: a distributed SQL and
NoSQL database (Spanner and BigTable), and a distributed
data analytics query engine (BigQuery). We present an end-
to-end execution breakdown of time spent on compute, dis-
tributed storage, and other remote work, such as shuffle
and compaction. Our characterization identifies the need for
software-hardware co-design, as 52% of end-to-end time is
spent on remote work and distributed storage operations.

• We provide detailed per-platform workload-level breakdowns
and identify key compute-intensive hardware acceleration
targets. We highlight that over 72% of time is spent on dat-
acenter and system tax components, an important unique
feature of distributed big data processing. With no individ-
ual function bottleneck, we argue that collectively, a sea of
accelerators, can accelerate many of these smaller functions
along with datacenter and system tax operations.

• We perform an accelerator limit study and trade-off analysis
with an analytical model for various sea of accelerators de-
sign points, varying placement (on-chip/off-chip), and the
amount of overlap in execution (synchronous/asynchronous
acceleration). Our results show that co-designs eliminating
storage and remote work overheads provide more significant
benefit. Additionally, with large working sets, analytics plat-
forms can slow down due to high off-chip accelerator data
transfer costs. The most benefit is achieved with asynchro-
nous accelerator execution where all accelerator invocations
are parallelized.

• Based on our characterization and analysis, we propose a
chained accelerator execution model, where consecutive oper-
ations are sent to the next accelerator without core coordina-
tion, that achieves less than a 1% difference compared to an
ideal fully asynchronous execution model. Through valida-
tion with a synthetic benchmark that computes a SHA3 hash

of fleet-wide representative protobuf messages, our chained
model obtains a 6.1% difference compared to an open-source
accelerated RISC-V system-on-chip baseline.

2 GOOGLE BIG DATA PROCESSING
This section first compares smaller-scale research systems with pro-
duction hyperscale big data processing systems. We then describe
the main big data processing systems at Google and outline the
goals of the paper.

2.1 Characteristics of Production Systems
Traditionally, databases started as a single node system where re-
quests and responses are served from a local storage. With the
growth of datasets, horizontal scaling techniques, such as sharding
or data partitioning, were often used to distribute data between
small node clusters. Such systems include [2, 12, 25, 37, 39, 61].
Concurrently, the growing volumes of data in hyperscale deploy-
ments pushed the industry towards an extreme horizontal scaling
approach.

In the case of Google, data processing systems are highly dis-
tributed and serverless similar to other hyperscale platforms [4,
11, 13, 20, 41, 58]. Incoming requests can be handled by many ho-
mogeneous modern Intel Xeon and AMD EPYC servers controlled
by a cluster manager for resource provisioning and separated by a
proprietary high-speed custom network [53, 59]. Working sets are
often hundreds of petabytes or more and are managed through a dis-
tributed file system and caching layer, which partitions, replicates,
and stores the data [15]. Finally, with data stored in different formats
and locations, platforms are split into databases and query engines,
helping to decouple data management from query execution. Exam-
ples of this trend are now emerging in academia, for example, with
the use of Spark and Hadoop for SQL execution while matching
some of the scale-out properties of industrial systems [9, 60].

2.2 Big Data Processing Overview
Figure 1 presents architecture overviews of three big data process-
ing platforms at Google: two distributed databases – Spanner and
BigTable – and one data analytics query engine, BigQuery.We chose
these three processing platforms because they take a significant
amount of fleet-wide CPU cycles (more than 10%), with over 90%
of these cycles being high-priority production tier cycles. Addition-
ally, they were chosen because they are highly optimized and tuned

Profiling Hyperscale Big Data Processing ISCA ’23, June 17–21, 2023, Orlando, FL, USA

Table 1: Storage-to-Storage Ratios. Petabytes of RAM to SSD
to HDD owned per platform.

Storage-to-Storage Ratios
RAM PiB : SSD PiB : HDD PiB

Spanner BigTable BigQuery

1 : 8 : 90 1 : 16 : 164 1 : 7 : 777

over many engineer years for serving live production traffic from
multiple internal and external consumers. These platforms ingest
various data sources, from user-owned structured data to logging
data obtained from monitoring. The distributed databases, Spanner
and BigTable, offer users a traditional SQL and a NoSQL key-value
store interface, respectively. BigQuery is used in combination with
the databases to provide insights to downstream users and systems
through SQL queries. We next describe these platforms in more
detail.

2.2.1 Spanner. Spanner is a scalable, globally distributed, syn-
chronously replicated database [15]. Figure 1a shows the high-level
architecture of Spanner where workers are distributed globally
between different regions and access data and metadata through
the distributed caching and file system layers. Spanner supports
both general-purpose transactions and SQL queries. Additionally, it
supports sequentially consistent reads and writes while providing
globally-consistent reads across the database. Databases built on
Spanner can scale to petabytes in size. Users of Spanner include Ad-
vertising, Docs, Play, Photos, and a long tail of smaller applications.

2.2.2 BigTable. BigTable is a scalable, cluster-level key-value stor-
age system [13]. Unlike Spanner, BigTable supports a loose set of
consistency requirements for simple transactional queries. Similar
to Spanner, it is also designed to scale to petabyte-sized databases
and handles millions of requests per second. Figure 1b shows Big-
Table’s architecture, where a single BigTable cluster stores a data-
base table in multiple servers. Users of BigTable include Finance,
Earth, Search, and many smaller applications.

2.2.3 BigQuery. BigQuery is a large-scale distributed multi-tenant
query engine and data warehouse used for interactive data analysis
in Google’s production and cloud environments [14]. Unlike a pure
MapReduce-like system, BigQuery provides the ability to have
performant real-time interactive results (scan throughput of over a
billion records per second) with structured SQL queries. Figure 1c
shows the workflow of a query, where a series of intermediate
servers process data and a distributed shuffle engine sends data to
the next stage servers [36]. This platform has thousands of users
running workloads such as analysis of crawled web documents,
resolving issues from crash reports, and spam analysis.

2.3 Goals
Given the tremendous scale and complexity of the data processing
platforms, this work aims to understand and characterize them
from a systems and hardware perspective. We ask and answer the
following questions in the rest of the paper.

• Section 3: How are these hyperscaler systems balanced when
targeting extreme horizontal scaling? Is the storage to stor-
age ratio keeping up with the growing demand?

• Section 4: These hyperscaler platforms run on thousands to
millions of servers heavily, relying on distributed storage
and inter-node communication. What is the main bottleneck
in their end-to-end execution time and what kind of systems
optimizations can help these platforms?

• Section 5: Where is the main bottleneck at each local node in
these distributed platforms? Are there potential acceleration
targets on those nodes?

• Section 6: What is the upper bound of software-hardware
co-design for these platforms? What is an optimal model for
the complexities of distributed and local node components
in these platforms?

3 SYSTEM BALANCE
As data processed by big data platforms grows exponentially, we
are interested in understanding the systems balance in these hy-
perscaler platforms. Table 1 presents storage-to-storage system
balance ratios – a ratio of HDD, SSD, and RAM petabytes owned
per platform – given by internal logging resources over a full week
in 2022.

These platforms use large amounts of RAM for read caches and
write buffers to minimize expensive accesses to disaggregated storage.
For every 90, 164, or 777 bytes in HDD, a byte is allocated in RAM
across Spanner, BigTable, and BigQuery, respectively. This high
RAM usage makes these platforms expensive to operate. Disag-
gregated memory systems can potentially reduce these costs by
allowing a peak-of-sum allocation versus a sum-of-peaks provision-
ing model [34] for large memory caches.

These data processing platforms also have large working sets that
are too expensive to maintain entirely in memory. As a result, they
typically employ SSD caches to minimize accesses to HDDs, as
seen by the high RAM:SSD ratios. We observe that these platforms
read from SSDs more frequently than from HDDs, suggesting that
caching is an effective performance optimization. One promising
approach is using machine learning to place data between the
storage tiers [23, 38]. The SSD to HDD ratio is quite high (approx.
10x to 110x) for the platforms, suggesting that we have a unique
opportunity to rethink the storage hierarchy and add more caching
layers. Looking ahead, if storage were to grow at twice the rate of
compute (e.g., domains like video), system balance across compute
and storage will be further stressed, motivating rethinking memory
and distributed storage hierarchies [45].

4 END-TO-END EXECUTION TIME
BREAKDOWN

To accelerate a large distributed system, we first need to understand
how time is spent within the system. This section presents an
end-to-end execution breakdown of the three big data processing
platforms and characterizes the time spent locally versus remotely
in the distributed workflow.

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Gonzalez, et al.

0.0 0.2 0.4 0.6 0.8 1.0

Query Groups

0

20

40

60

80

100

Ex
ec

ut
io

n
Ti

m
e

(%
)

Ov
er

al
l A

ve
ra

ge
CP

U
He

av
y

Re
m

ot
e

W
or

k
He

av
y

IO
 H

ea
vy

Ot
he

rs

0

20

40

60

80

100
Spanner

Ov
er

al
l A

ve
ra

ge
CP

U
He

av
y

Re
m

ot
e

W
or

k
He

av
y

IO
 H

ea
vy

Ot
he

rs

BigTable

Ov
er

al
l A

ve
ra

ge
CP

U
He

av
y

Re
m

ot
e

W
or

k
He

av
y

IO
 H

ea
vy

Ot
he

rs

BigQuery

CPU Remote Work IO

0.0

0.2

0.4

0.6

0.8

1.0

Ov
er

al
l P

er
ce

nt
ag

e
Of

 Q
ue

rie
s (

%
)

0

20

40

60

80

100

Figure 2: End-to-EndExecutionTimeBreakdown. Execution
time corresponds to the stacked bar portion of the graph,
while percentage of queries corresponds to the line drawn.

4.1 Methodology
We profile Spanner and BigTable using Dapper, an internal RPC
trace logging system that measures and traces RPCs between pro-
duction services [52]. For BigQuery, we collect end-to-end time
breakdowns from its internal timing logs. Given the large number
of queries run in a day and the massive time spent on trace process-
ing, we sample one-thousandth of all queries in a day for Spanner
and BigTable. We categorized end-to-end execution time obtained
into remote work, storage/IO, and CPU time. The remote work
represents when a local server node is waiting for remote workers
to complete operations such as consensus protocols for Spanner,
compaction in remote storage for BigTable, and distributed shuffles
for BigQuery. To match the RPC trace logs to BigQuery’s timing
logs, we categorized overlapped time first into remote work, then
IO, then CPU time, assuming that CPU time was blocked on remote
work and IO.

4.2 Time Breakdown
Figure 2 shows the end-to-end breakdown of the platforms. We
separate the queries into five groups: “CPU Heavy”, “IO Heavy”,
“Remote Work Heavy”, “Others“, and the “Overall Average” break-
down of all queries. We categorize CPU heavy queries as queries
that spent more than 60% of time on CPU computation, and IO and
Remote heavy queries as queries that spent more than 30% of the
time on distributed storage and remote work. A few observations
stand out.

Spanner and BigTable are primarily CPU heavy, while BigQuery
has more IO and remote work:More than 60% of the queries are CPU
heavy in Spanner and BigTable, where only 10% of the BigQuery
queries are CPU heavy. Spanner and BigTable deploy better caching
mechanisms for both data and metadata and therefore, most cycles
are spent on performing computation. These two platforms are

Table 2: Datacenter Tax Category Descriptions

Datacenter Tax Description

Compression (De)compression ops.
Cryptography Hashing, security tools/infra., etc.
Data Movement mem{cpy,move}, copy_user ops.
Mem. Allocation Mem. reservation ops. (malloc, etc.)
Protobuf (De)serialization setup and ops.
RPC Remote procedure calls

prime candidates for hardware acceleration. On the other hand,
BigQuery, which mainly focuses on data analytics workloads, can
benefit from better management of storage and remote work. Big-
Query workloads are often larger and less cachable than the pure
database workloads, for example, doing large scans over terabyte-
sized tables. This breakdown matches our observation in Section 3
that data analytics engines can be more IO heavy than databases.

IO and remote work optimizations are important for overall sys-
tem acceleration: Across all platforms, all queries spent 48%, 22%,
and 30% of time on compute, remote work, and IO. As a result,
52% of end-to-end time is collectively spent on remote work and
distributed storage operations. This indicates the importance of
software-hardware optimizations, such as optimizing distributed
shuffle mechanisms and consensus protocols over the network. Ad-
ditionally, intelligently placing data closer to compute through new
caching mechanisms or new memory tiers will also reduce data
transfer over the network.

5 CPU EXECUTION TIME BREAKDOWN
This section presents a breakdown of the CPU cycles spent on the
three platforms isolated from non-CPU dependencies.We also study
microarchitecture differences and identify optimizations based on
these breakdowns.

5.1 Methodology
We use Google-Wide Profiling (GWP), a fleet-wide profiling tool,
for sampling and collecting CPU profiles across machines from
Google’s production fleet over a single representative day in 2022 [28].
We manually categorize, prioritize, and aggregate returned samples
by their leaf functions in the call stack. This allows us to introspect
on CPU compute cycles and performance counters (e.g., branch
misses per kilo-instruction) spent on specific functions to under-
stand system bottlenecks.

5.2 Node-level Breakdown
To get a better intuition on common computing patterns and bottle-
necks, we breakdown compute cycles into three broad categories:
core compute, datacenter taxes, and system taxes.

• Core compute is the essential business logic and core primitives
of the specific data processing platform. This category helps
identify data processing patterns that are common across
multiple platforms (e.g., joins and sorts).

• Datacenter taxes, shown in Table 2, are the key functions
necessary to run hyperscale workloads [28, 56].

Profiling Hyperscale Big Data Processing ISCA ’23, June 17–21, 2023, Orlando, FL, USA

Table 3: System Tax Category Descriptions

System Tax Description

EDAC Error handing (checksums, etc.)
File Systems IO backend client compute
Other Memory Ops. Non-data-movement mem. ops.
Multithreading Thread management overheads
Networking Packet, web, server processing
Operating Systems Kernel, syscalls, time ops.
STL Standard fleet-wide libraries
Misc. System Taxes Uncategorized ops.

0 20 40 60 80 100
Execution Time (%)

BigQuery

BigTable

Spanner

Pl
at

fo
rm

Core Compute Datacenter Taxes System Taxes

Figure 3: High-Level Application-Level Cycle Breakdown

Table 4: Spanner and BigTable Core Compute Descriptions

Operation Description

Read Read operations
Write Write/commit operations
Compaction Revision control/cleanup
Consensus Replication and consensus protocols
Query SQL-like compute
Misc. Long-tail of labeled misc. compute
Uncategorized Unlabeled compute

• System taxes are overheads that are not considered traditional
datacenter taxes but are shared amongst many production
binaries. Table 3 describes the overheads1.

Figure 3 shows the compute cycles of each platform broken down
into the three broad categories. The figure shows that neither core
compute, nor datacenter taxes, nor system taxes dominate overall
compute cycles. The time spent on core compute operations specific to
data processing is relatively small, 18% to 36% of total cycles. 32% to
40% of CPU cycles are spent on datacenter taxes, while 32% to 42%
of CPU cycles are attributed to system taxes. The relative fractions
of core compute, datacenter tax, and system tax is a reflection of the
local versus distributed design trade-offs in these systems. While
traditional approaches to accelerating core compute database op-
erators, such as aggregation and joining, can have some benefits,
all datacenter taxes, system taxes, and core compute need to be ac-
celerated holistically to avoid diminishing end-to-end performance
improvements, as shown by Amdahl’s Law.

1The “Other Memory Ops.” category could be associated with datacenter taxes, but to
stay consistent with the original definitions in [28] we assigned it to system taxes.

Co
m

pa
ct

io
n

Co
ns

en
su

s
M

isc
.

Qu
er

y
Re

ad
Un

ca
te

go
riz

ed
W

rit
e

0

5

10

15

20

25

Spanner

Co
m

pa
ct

io
n

Co
ns

en
su

s
M

isc
.

Re
ad

Un
ca

te
go

riz
ed

W
rit

e

0

5

10

15

20

25

30

35
BigTable

Ag
gr

eg
at

e
Co

m
pu

te
De

st
ru

ct
ur

e
Fil

te
r

Jo
in

M
at

er
ia

liz
e

M
isc

. C
or

e
Op

s.
Pr

oj
ec

t
So

rt

0

5

10

15

20

BigQuery

Core Compute Category

Ex
ec

ut
io

n
Ti

m
e

in
 S

ho
wn

 C
at

eg
or

ie
s (

%
)

Figure 4: Core Compute Execution Breakdown

Table 5: BigQuery Core Compute Descriptions

Operation Description

Aggregate Compute/data-mov. for hash/sort aggs.
Compute Col.-wise ops on pre-grouped aggs.
Destructure Structured element field access
Filter Scan/selection of rows
Join Compute/data-mov. of hash/sort joins
Materialize Construction of in-memory tables
Project Retrieval of individual table columns
Sort Non agg./join sort operations

5.3 Core Compute
Figure 4 shows the normalized breakdown of CPU cycles per fine-
grained category within the platform core compute cycles. Tables 4
and 5 describe the individual categories.

We first observe that across all of the platforms, no single fine-
grained category dominates, indicating that there is no single-function
accelerator that can dramatically improve performance. However,
there are fine-grained clusters of related functionality that can be
combined to form groupings of hardware accelerators that can pro-
vide coverage of a large portion of cycles. For example, BigQuery
spends the majority of its core compute cycles on functions such
as filtering, aggregation, and compute (14% to 23%) once the data is
retrieved from the underlying storage service or database. These
functions can form the basis of a common set of hardware accelera-
tors optimized for these operations instead of a single accelerator.
Similarly, the databases (Spanner and BigTable) spend the majority
of their cycles on read, write, and consensus protocols that could
be accelerated together.

We also see the different acceleration candidates across these two
classes of platforms based on the design choices made. BigQuery
has fewer core compute read/write-like operations (low materialize
and project categories). This is because it executes these operations
as part of the datacenter/system tax categories when retrieving

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Gonzalez, et al.

data from other backend services, without needing to enforce addi-
tional read/write semantics. In contrast, the databases devote large
amounts of additional compute to ensure transaction semantics.

Finally, our study suggests that clustering smaller cross-category
accelerators together into a data processing shared accelerator complex
can provide significant acceleration for hyperscale data processing.
This differs from prior works that broadly accelerated applications
or individual algorithms to a new paradigm of smaller accelerator
complexes [24, 51].

5.4 Datacenter Taxes
Figure 5 shows the percentage of CPU cycles per fine-grained cat-
egory within the datacenter taxes. Within these taxes, protobuf,
compression, and RPCs have widespread impact showing that ac-
celerating protobuf, compression, and RPC will achieve pareto benefits
for the broader big data processing domain. Next, we provide more
details on each of these components.

Protobuf takes 20% to 25% of the datacenter tax suggesting that
recently proposed protobuf accelerators such as [30, 42] could be
beneficial in combination with software optimization approaches to
reduce overhead. Spanner and BigTable have lower protobuf usage
compared to BigQuery. This is due to the use of optimized file and
data types that are flattened (versus typical protobuf structures)
and compute reduction techniques like filter pushdowns.

We see large compression costs, ranging from 14% to 31%. In
particular, compression takes more than 30% of datacenter tax in
BigQuery and BigTable because both platforms operate on large
chunks of compressed data, wherein compression and decompres-
sion are on the critical path. Thus compression accelerators will
show strong benefits for these platforms that operate closely with
the underlying data [6].

RPC costs are also high in database platforms, taking 23% and
37% in Spanner and BigTable, respectively. Since these platforms are
often serving data to other platforms, RPCs are needed to feed the
data obtained to other frontend services. In contrast, RPC overhead
is relatively low at 11% in BigQuery because its queries are generally
larger as compared to the database platforms. This result suggests
that RPC acceleration is another candidate for acceleration gains.

5.5 System Taxes and Combined Acceleration
Figure 6 shows the percentage of compute cycles used for system
taxes. Two fine-grained categories stand out: operating systems and
file systems.

Across all platforms, we observe a high use of operating systems
consuming 18% to 28% of system tax cycles. Standard libraries are
also large for many platforms taking up to 53% of system tax. These
overheads break down into many mixed functions that all Google
platforms use extensively.

Given the high percentages of datacenter and system taxes, we
conclude that accelerating data processing platforms depends on
optimizing these components, along with the integration of core
compute accelerators. One promising direction is to build a set
of “glue accelerators” that provides hardware acceleration for key
datacenter taxes, such as protobuf and compression, in combination
with common system taxes. For example, these accelerators can
fetch and prefetch data from distributed storage systems, apply

Co
m

pr
es

sio
n

Cr
yp

to
gr

ap
hy

Da
ta

 M
ov

em
en

t
M

em
or

y
Al

lo
ca

tio
n

Pr
ot

ob
uf

RP
C

0
5

10
15
20
25
30
35

Spanner

Co
m

pr
es

sio
n

Cr
yp

to
gr

ap
hy

Da
ta

 M
ov

em
en

t
M

em
or

y
Al

lo
ca

tio
n

Pr
ot

ob
uf

RP
C

0

5

10

15

20

25

30

BigTable

Co
m

pr
es

sio
n

Cr
yp

to
gr

ap
hy

Da
ta

 M
ov

em
en

t
M

em
or

y
Al

lo
ca

tio
n

Pr
ot

ob
uf

RP
C

0

5

10

15

20

25

30
BigQuery

Datacenter Tax Category

Ex
ec

ut
io

n
Ti

m
e

in
 S

ho
wn

 C
at

eg
or

ie
s (

%
)

Figure 5: Datacenter Tax Execution Breakdown

ED
AC

Fil
e

Sy
st

em
s

Ot
he

r M
em

or
y

Op
s.

M
ul

tit
hr

ea
di

ng
Ne

tw
or

ki
ng

Op
er

at
in

g
Sy

st
em

s
St

an
da

rd
 L

ib
ra

rie
s

M
isc

. S
ys

te
m

 Ta
xe

s

0

10

20

30

40

50
Spanner

ED
AC

Fil
e

Sy
st

em
s

Ot
he

r M
em

or
y

Op
s.

M
ul

tit
hr

ea
di

ng
Ne

tw
or

ki
ng

Op
er

at
in

g
Sy

st
em

s
St

an
da

rd
 L

ib
ra

rie
s

M
isc

. S
ys

te
m

 Ta
xe

s

0

10

20

30

40

50

BigTable

ED
AC

Fil
e

Sy
st

em
s

Ot
he

r M
em

or
y

Op
s.

M
ul

tit
hr

ea
di

ng
Ne

tw
or

ki
ng

Op
er

at
in

g
Sy

st
em

s
St

an
da

rd
 L

ib
ra

rie
s

M
isc

. S
ys

te
m

 Ta
xe

s

0

10

20

30

40

50

BigQuery

System Tax Category

Ex
ec

ut
io

n
Ti

m
e

in
 S

ho
wn

 C
at

eg
or

ie
s (

%
)

Figure 6: System Tax Execution Breakdown

datacenter tax acceleration, and store the resulting in-memory
representation of data in a disaggregated cache tier. Furthermore,
integration with the core compute accelerators targeting scan, filter,
and aggregation can provide even larger benefits, such as operating
on cached in-memory data. In a centralized accelerator-as-a-service
model, this allows offloading core compute operators and “glue
logic” to this complex for data processing platforms while allowing
other non-data-processing services to re-use shared accelerators
for better utilization. We model the benefit of the sea of accelerators
complex in Section 6 under different acceleration execution models.
However, next, we further breakdown node-level execution into
the microarchitectural characteristics of these components.

Profiling Hyperscale Big Data Processing ISCA ’23, June 17–21, 2023, Orlando, FL, USA

Table 6: Platform IPC and MPKI Statistics

Statistic Spanner BigTable BigQuery

IPC 0.7 0.7 1.2

Misses Per Kilo Instructions (MPKIs)

BR 5.5 6.2 3.5
L1I 19.0 18.2 11.3
L2I 9.7 11.5 4.6
LLC 1.2 1.3 1.0
ITLB 0.5 0.5 0.4
DTLB LD 2.3 2.9 1.8

5.6 Microarchitectural Characterization
Tables 6 and 7 present microarchitecture performance data for the
big data processing platforms. We present the following takeaways
from these numbers.

First, the average instructions per cycle (IPC) of all big data
processing platforms is 0.8. Spanner and BigTable exhibit IPCs lower
than the average IPC, while BigQuery is higher. This indicates that
data analytics platforms are more conducive to run on accelerated
machines with smaller, more energy-efficient architectures.

Second, the two database platforms suffer from almost 2x higher
branch, L1I, and L2Imisses per kilo instructions (MPKI) as compared
to the query engine. This suggests that these database platforms have
more complex control flows and larger instruction footprints than data
analytics platforms. This behavior is to be expected since databases
typically have stricter performance and fault-tolerance SLOs, re-
quiring the use of complex consensus and replication strategies
resulting in long code paths and hard-to-predict control flows.

Third, the database platforms incur more DTLB Load MPKI than
the query engine showing more back-end stalls while accessing data.
This behavior is expected as data analytics jobs typically run large
operations like scans and aggregations that have more uniform and
predictable data access patterns while databases typically execute
point queries and transactions, often with very little inter-query
locality. These trends indicate that heterogeneity can be beneficial
for these workloads. More complex cores with better branch pre-
dictors, larger instruction caches, better prefetchers, and larger
TLB hierarchies are more suited to database workloads, while rel-
atively simpler cores are more suited to running data analytics
workloads [57].

Table 7 further breaks down the microarchitectural statistics into
core compute (CC), datacenter taxes (DCT), and system taxes (ST).
For BigQuery, core compute operations experience higher IPCs
when compared to datacenter tax or system tax operations. The
higher IPC results from both lower front-end stalls, as evidenced by
fewer branch mispredictions, and instruction cache misses, and also
from fewer back-end stalls, as evidenced by fewer DTLB misses.

These trends suggest that code paths in core compute operations
are shorter and less complex than the ones seen in tax operations and
are more amenable to simpler cores. Since tax operations handle
complex tasks like network communication, compression, and en-
cryption, it is expected that these code paths are more complex
than core compute. This is positive news for future system designs:

Table 7: High-Level Platform IPC and MPKI Statistics. CC,
DCT, and ST, stand for Core Compute, Datacenter Tax, and
System Tax, respectively.

Spanner BigTable BigQuery

CC DCT ST CC DCT ST CC DCT ST

IPC 0.9 0.6 0.7 0.6 0.6 0.7 1.4 1.0 1.0

Misses Per Kilo Instructions (MPKIs)

BR 5.4 5.5 5.5 5.2 5.3 6.9 2.0 3.8 3.5
L1I 12.4 16.7 21.6 9.6 14.7 21.9 1.1 13.6 10.8
L2I 4.2 8.0 11.8 4.2 8.4 14.7 0.4 3.4 6.0
LLC 0.6 1.0 1.4 1.0 1.2 1.4 0.3 1.1 1.1
ITLB 0.2 0.6 0.4 0.2 0.5 0.5 0.1 0.6 0.2
DTLB LD 0.8 2.0 2.7 1.3 2.1 3.6 0.6 2.2 1.7

when tax operations are offloaded to accelerators, the remaining core
compute is amenable to traditional hardware optimizations.

6 SEA OF ACCELERATORS: LIMITS STUDY
This section presents analytical models for the sea of accelerators
complex and a set of limit studies to estimate how accelerator
system variations can improve end-to-end platform performance.

6.1 Base Model
With large hyperscale systems, it is useful to estimate performance
gain attributed to new innovations in accelerator design, storage
technologies, and networking capabilities before spending signifi-
cant amount of engineering resources. We propose an analytical
model that estimates the upper-bound performance benefit of accel-
eration for these platforms. It answers two system and architectural-
level questions. First, how much can software-hardware co-design
reduce distributed overheads? Second, how much benefit is achiev-
able using a sea of accelerators complex for CPU execution?

Figure 7 shows the parameters for modeling execution time
including overlaps and dependencies between accelerated and non-
accelerated components. First, the model captures CPU time over-
lap with non-CPU dependencies such as IO and remote work as
described in Section 4.1. Next, since accelerators can be invoked
synchronously or asynchronously (sequential or parallel execution),
the model includes overlap between each accelerated component.
Asynchronous execution assumes that there is no dependency be-
tween dominant CPU components being accelerated and represents
the ideal case where all accelerators are being executed in parallel,
whereas synchronous execution represents a strict serial depen-
dency between the core and other accelerators. Finally, the model
incorporates on-chip and off-chip accelerator locations.

Equation 1 shows the definition of end-to-end time, 𝑡𝑒2𝑒 , as a
function of CPU time, 𝑡𝑐𝑝𝑢 , and its non-CPU dependencies (i.e., re-
motework or IO costs), 𝑡𝑑𝑒𝑝 . In this equation, (1−𝑓)∗𝑚𝑖𝑛(𝑡𝑐𝑝𝑢 , 𝑡𝑑𝑒𝑝)
accounts for the overlapped time between CPU and non-CPU depen-
dencies and is subtracted to achieve the end-to-end time. Equation 2
is an extension of Equation 1 used to calculate a new accelerated end-
to-end time, 𝑡 ′

𝑒2𝑒 , as a function of accelerated CPU time, 𝑡 ′𝑐𝑝𝑢 . This
accelerated CPU time is split into accelerated and non-accelerated

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Gonzalez, et al.

Time Parameters

𝑡𝑒2𝑒 , 𝑡 ′𝑒2𝑒 Original and accelerated end-to-end time (s)
𝑡𝑐𝑝𝑢 , 𝑡 ′𝑐𝑝𝑢 Original and accelerated CPU time (s)
𝑡𝑑𝑒𝑝 Non-CPU time (s) that 𝑡𝑐𝑝𝑢 depends on
𝑡𝑎𝑐𝑐 Accel. CPU time (s) for all subcomponents
𝑡𝑛𝑎𝑐𝑐 Unaccel. CPU time (s) for all subcomponents
𝑡𝑠𝑢𝑏𝑖 , 𝑡

′
𝑠𝑢𝑏𝑖

Original and accel. CPU subcomp. time (s)
𝑡𝑙𝑠𝑢𝑏 Largest accelerated CPU subcomp. time (s)
𝑡𝑝𝑒𝑛𝑖 Accelerator penalty time (s)
𝑡𝑠𝑒𝑡𝑢𝑝𝑖 Setup time (s) for the accel. (e.g., initialization)

Overlap Parameters

𝑓 Sync. factor between 𝑡𝑑𝑒𝑝 and 𝑡𝑐𝑝𝑢 from [0, 1]
𝑔𝑠𝑢𝑏𝑖 Sync. factor between 𝑡 ′

𝑠𝑢𝑏𝑖
’s from [0, 1]

Miscellaneous Parameters

𝑁 ,𝑈 Number of non-accel. and accel. components
𝑠𝑠𝑢𝑏𝑖 Acceleration factor for a CPU subcomponent
𝐵𝑖 Bytes to offload to accelerator (0 when on-chip)
𝐵𝑊𝑖 Bandwidth between CPU and accelerator

𝑡𝑒2𝑒 = 𝑡𝑐𝑝𝑢 + 𝑡𝑑𝑒𝑝 − (1 − 𝑓) ∗𝑚𝑖𝑛(𝑡𝑐𝑝𝑢 , 𝑡𝑑𝑒𝑝) (1)
𝑡 ′𝑒2𝑒 = 𝑡 ′𝑐𝑝𝑢 + 𝑡𝑑𝑒𝑝 − (1 − 𝑓) ∗𝑚𝑖𝑛(𝑡 ′𝑐𝑝𝑢 , 𝑡𝑑𝑒𝑝) (2)

𝑡 ′𝑐𝑝𝑢 = 𝑡𝑎𝑐𝑐 + 𝑡𝑛𝑎𝑐𝑐 (3)

𝑡𝑛𝑎𝑐𝑐 =

𝑁∑
𝑖=0

𝑡𝑠𝑢𝑏𝑖 (4)

𝑡𝑎𝑐𝑐 =𝑚𝑎𝑥 ((
𝑈∑
𝑖=0

𝑔𝑠𝑢𝑏𝑖 ∗ 𝑡
′
𝑠𝑢𝑏𝑖

), 𝑡𝑙𝑠𝑢𝑏) (5)

𝑡𝑙𝑠𝑢𝑏 =𝑚𝑎𝑥 ({𝑡 ′
𝑠𝑢𝑏𝑖

: 𝑖 = 0, ...,𝑈 }) (6)

𝑡 ′
𝑠𝑢𝑏𝑖

=
𝑡𝑠𝑢𝑏𝑖

𝑠𝑠𝑢𝑏𝑖
+ 𝑡𝑝𝑒𝑛𝑖 (7)

𝑡𝑝𝑒𝑛𝑖 = 𝑡𝑠𝑒𝑡𝑢𝑝𝑖 + 2 ∗ 𝐵𝑖

𝐵𝑊𝑖
(8)

Figure 7: Base Model Parameters and Equations

time, 𝑡𝑎𝑐𝑐 and 𝑡𝑛𝑎𝑐𝑐 , respectively, as shown in Equation 3. Here the
non-accelerated time, 𝑡𝑛𝑎𝑐𝑐 , is a sum of all 𝑁 original unaccelerated
component times, 𝑡𝑠𝑢𝑏𝑖 (i.e., unaccelerated time to complete com-
pression or aggregation compute). Equation 5 shows the accelerated
CPU time, 𝑡𝑎𝑐𝑐 , as function of accelerated subcomponent time, 𝑡 ′

𝑠𝑢𝑏𝑖
,

and a corresponding overlap factor, 𝑔𝑠𝑢𝑏𝑖 , for all accelerated com-
ponents 𝑈 . Here the 𝑔𝑠𝑢𝑏𝑖 overlap factor indicates the overlap of
an accelerated component with all other execution components.
When all accelerated components overlap, then the largest acceler-
ated subcomponent, 𝑡𝑙𝑠𝑢𝑏 , dominates, as seen in Equation 6. The
accelerated subcomponent time, in this case, is the original CPU
component time, 𝑡𝑠𝑢𝑏𝑖 , sped up by 𝑠𝑠𝑢𝑏𝑖 and delayed by a penalty
time of 𝑡𝑝𝑒𝑛𝑖 shown in Equation 7. The penalty time represents
accelerator setup time 𝑡𝑠𝑒𝑡𝑢𝑝 (e.g., initializing accelerator-specific

Component
Speedup Time:

tsubi
/ssubi

Offload Time:
Bi/BWi

Offload Time:
Bi/BWi

ith Component Accelerated Time: t’subi

Overlap Time:
gsubi

× t’subi
Accelerated Time: tacc

Setup Time:
tsetupi

 jth Component Accelerated Time: t’subj

Figure 8: 𝑡𝑎𝑐𝑐 Diagram. Example of Eq. 5-8 with two compo-
nents (𝑡𝑠𝑢𝑏𝑖 and 𝑡𝑠𝑢𝑏 𝑗

) accelerated.

0.0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

100

Ov
er

al
l E

nd
-to

-E
nd

 S
pe

ed
up

0 20 40 60

101

102

103

Without Remote Work & IO

Spanner
BigTable
BigQuery

0 20 40 60
1.0

1.2

1.4

1.6

1.8

2.0

2.2
With Remote Work & IO

Per Accelerator Speedup

Figure 9: Synchronous On-Chip Upper Bound. 0% or 100% of
remote work and IO (i.e., non-CPU) time is removed.

registers) combined with the data transfer time of communicating
from the host memory space to the accelerator. In the case of an on-
chip shared-memory-coherent accelerator, all of its data is already
present in the cache and/or DRAM, so the penalty time would only
be 𝑡𝑠𝑒𝑡𝑢𝑝 (i.e., 𝐵𝑖 is 0). Off-chip uncached accelerators on the other
hand would need to transfer 𝐵𝑖 bytes of data over an off-chip link
that has a 𝐵𝑊𝑖 bandwidth. Figure 8 pictorially shows the acceler-
ated CPU time, 𝑡𝑎𝑐𝑐 , as a function of any penalties, overlaps, and
speedups in Equations 5-8 with two components accelerated.

6.2 On-Chip Acceleration Limit Studies
In this set of studies, we measure the upper-bound performance
speedup when accelerating the dominant CPU components iden-
tified in Section 5, through on-chip acceleration. To consider the
impact of potential non-CPU optimizations (i.e., retrieving data over
the network or remote shuffle costs), we keep or remove non-CPU
time (𝑡𝑑𝑒𝑝) from the system. For the components to accelerate, we
chose the top datacenter taxes (compression, RPC, protobuf), sys-
tem taxes (STL, OS), and core compute for each platform (read, filter,
compute, compaction, write, aggregation, misc. core operations).
For experiment simplicity, we assume that all CPU components are
accelerated from 1x to 64x (𝑠𝑠𝑢𝑏𝑖) in lockstep, everything is on-chip
(off-chip bytes transferred 𝐵𝑖 is 0), and the accelerator setup penalty

Profiling Hyperscale Big Data Processing ISCA ’23, June 17–21, 2023, Orlando, FL, USA

0.0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

100

Ov
er

al
l E

nd
-to

-E
nd

 S
pe

ed
up

0 25 50

2

4

6

8

10

12

14
Spanner

0 25 50
100

101

102

103

104

BigTable

0 25 50

2

4

6

8

10

12

BigQuery

CPU Heavy
Remote Work Heavy

IO Heavy
Others

Individual Accelerator Speedup

Figure 10: Grouped Synchronous On-Chip Upper Bounds.
Remote work and IO time are all removed.

New Time Parameters

𝑡𝑐ℎ𝑛𝑑 Accelerated chained component time (s)
𝑡𝑙𝑝𝑒𝑛 Largest accelerator penalty time (s)
𝑡𝑙𝑠𝑢𝑏𝑛𝑝 Largest accelerator component time without

penalty time (s)

New Miscellaneous Parameters

𝐶 Number of chained compute components

𝑡 ′𝑐𝑝𝑢 = 𝑡𝑐ℎ𝑛𝑑 + 𝑡𝑎𝑐𝑐 + 𝑡𝑛𝑎𝑐𝑐 (9)
𝑡𝑐ℎ𝑛𝑑 = 𝑡𝑙𝑝𝑒𝑛 + 𝑡𝑙𝑠𝑢𝑏𝑛𝑝 (10)

𝑡𝑙𝑝𝑒𝑛 =𝑚𝑎𝑥 ({𝑡𝑝𝑒𝑛𝑖 : 𝑖 = 0, ...,𝐶}) (11)

𝑡𝑙𝑠𝑢𝑏𝑛𝑝 =𝑚𝑎𝑥 ({
𝑡𝑠𝑢𝑏𝑖

𝑠𝑠𝑢𝑏𝑖
: 𝑖 = 0, ...,𝐶}) (12)

Figure 11: Model Extension For Accelerator Chaining

(𝑡𝑠𝑒𝑡𝑢𝑝) is 0. We also assume that all components are synchronous
with respect to one another (𝑔𝑠𝑢𝑏𝑖 is 1) representing that accelerator
execution cannot be parallelized with other execution since shared
memory synchronization is traditionally costly. Finally, the values
of 𝑓 , 𝑡𝑒2𝑒 , 𝑡𝑠𝑢𝑏𝑖 , and 𝑡𝑑𝑒𝑝 are derived from Sections 4 and 5.

Figure 9 shows the upper bound speedup of end-to-end execu-
tion time for each platform’s queries with and without non-CPU
dependencies. With the removal of non-CPU dependencies, the
ideal upper bound speedup for all queries can reach peaks of 9.1x,
3,223.6x, and 8.5x for Spanner, BigTable, and BigQuery, respectively.
However, if the dependencies still exist, we see multiple orders-of-
magnitude lower theoretical upper bounds of 2.0x, 2.2x, and 1.4x, for
Spanner, BigTable, and BigQuery, respectively. This result clearly
demonstrates that hardware-only acceleration can only achieve
a fraction of the upper-bound performance in these distributed
platforms. A software-hardware co-design shifts the IO/remote bot-
tleneck to the CPU and, therefore, drastically improves the speedup
obtained.

ith Chained Component Speedup Time: tsubi
/ssubi

max(tsubi
/ssubi ,

tsubj
/ssubj

)

Chained Accelerated Time: tchnd

Setup Time:
tsetupi

Offload
Time:
Bi/BWi

jth Chained Comp. Speedup Time: tsubj
/ssubj

Figure 12: 𝑡𝑐ℎ𝑛𝑑 Diagram. Example of Eq. 10 with two com-
ponents (𝑡𝑠𝑢𝑏𝑖 and 𝑡𝑠𝑢𝑏 𝑗

) chained and 𝑡𝑝𝑒𝑛𝑖 > 𝑡𝑝𝑒𝑛 𝑗
.

Figure 10 further breaks down the speedup without non-CPU
dependencies into the four query groups given in Section 4: “CPU
Heavy”, “Remote Work Heavy”, “IO Heavy”, and “Other” queries.
Due to IO and remote work removal, we see that query groups that
are IO or remote heavy dominant have the largest speedups across
all platforms. Removing these dependencies increases the initial
speedup when acceleration is close to 1x, while the remaining CPU
time that is accelerated affects the overall slope of acceleration. For
Spanner and BigTable, removing IO and remote work is important
for large speedups across all queries. However, unlike the databases,
BigQuery’s execution time is more varied, thus removal of IO and
remote work, as well as CPU acceleration, are all equally necessary
for substantial performance gains.

6.3 Accelerator System Features Limit Study
We next study the sea of accelerators with different execution mod-
els. For this set of analyses, we vary accelerator placement – on-chip
or off-chip – and accelerator invocation by the core – synchronous
or asynchronous. Additionally, we evaluate a “chained” execution
model where the accelerators can directly communicate with each
other. This model provides an unique opportunity to pipeline ac-
celerators: while the current accelerator is still processing, the
computed results are sent to the next accelerator, allowing it to
overlap execution with prior accelerators while still maintaining
the strict dependency between components. We first extend our
analytical model to represent accelerator chaining and then analyze
the benefits of chaining when compared to more traditional accel-
erator models. We then conclude with a setup time limit study and
prior accelerator comparison under the different system features.

6.3.1 Extending to Chained Acceleration. For operations that are
known to be linked together, accelerator chaining can improve the
performance benefits by avoiding communication latency to the
CPU when sending data between accelerators. Figures 11 and 12
show the model extension to account for a subset of accelerated
components being chained. Equation 9 shows the modification of
overall new CPU time, 𝑡 ′𝑐𝑝𝑢 , to include the time spent in unchained
accelerated components (the original accelerated time 𝑡𝑎𝑐𝑐), unac-
celerated components (𝑡𝑛𝑎𝑐𝑐), and 𝑡𝑐ℎ𝑛𝑑 , a new variable to model
chained accelerated component time. For the chained acceleration
time, all 𝐶 chained accelerators will be pipelined, with the longest
accelerated component without accelerator setup penalty, 𝑡𝑙𝑠𝑢𝑏𝑛𝑝 ,
determining the overall time of the chain as seen in Equation 12.

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Gonzalez, et al.

Figure 13: Accelerator Feature Upper Bounds. Subsequent X-axis elements are incrementally accelerated. Remote work and
IO are not removed.

Finally, we bound the initial penalty time for setting up the acceler-
ator chain by the largest accelerator penalty time, 𝑡𝑙𝑝𝑒𝑛 , and add
it to longest accelerated component (𝑡𝑙𝑠𝑢𝑏𝑛𝑝) to obtain the overall
chained execution time (𝑡𝑐ℎ𝑛𝑑).

6.3.2 Accelerator Feature Upper Bounds. Figure 13 evaluates four
accelerator configurations, starting with the traditional synchro-
nous off-chip accelerators and then incrementally adding optimiza-
tions. First, we remove off-chip data movement by moving the accel-
erator on-chip (Sync + On-Chip). Then, we assume that the acceler-
ator is asynchronous to other accelerators improving concurrency
(Async + On-Chip). Finally, we evaluate the impact of accelerators
chained together (Chained + On-Chip): this removes communi-
cating back to CPU after every execution and avoids the need for
fine-grained synchronization via shared memory. For changing syn-
chronicity, we vary 𝑔𝑠𝑢𝑏𝑖 , which is 0 for synchronous case and 1 for
asynchronous case. For accelerators located off-chip, we calculate
off-chip data transfer overheads by setting each CPU component’s
𝐵𝑖 to the average number of bytes in a query, then divide by a
PCIe Gen5 link bandwidth 𝐵𝑊𝑖 of 4𝐺𝐵/𝑠 . For this experiment, we
progressively add the set of accelerators mentioned in Section 6.2,
beginning with datacenter tax operations, then system tax, and
core compute operations shown in subsequent X-axis labels.

Starting with Spanner and BigTable, we see that synchronous on-
chip acceleration provides a 1.04x performance uplift over off-chip
acceleration. Moving on-chip has low benefit since the majority
of queries transfer a small amount of data. However, in scenarios
where an off-chip accelerator provides a larger speedup factor, this
benefit would be larger as on-chip acceleration would amortize
more of the off-chip data transfer. With asynchronicity among ac-
celerators (Async + On-Chip), the end-to-end speedup improves
up to 1.3x compared to synchronous execution indicating that asyn-
chronicity is critical in multi-accelerator systems.

When full asynchronicity is bounded by the inherent serializa-
tion between components, chaining provides an alternative if ac-
celerators can send data to one another. For Spanner and BigTable,

chaining provides less than 1% difference to fully asynchronous accel-
erators. Chaining amortizes pipeline penalty time (𝑡𝑝𝑒𝑛𝑖) and allows
for fast data transfer between accelerators through constructs like
pipeline FIFOs instead of enforcing complex fine-grained synchro-
nization through shared memory.

BigQuery shows different trade-offs due to its larger data pay-
loads. BigQuery, as a data analytics platform, often operates on
orders of magnitude larger batches of data per query compared to
transactional platforms like Spanner and BigTable. Thus, the data
transfer off-chip dominates, leading to a 0.02x slowdown for off-chip
acceleration. Moving acceleration on-chip is beneficial since the
penalty is removed. Once on-chip, BigQuery shows similar trade-
offs with asynchronous and chained accelerators, with speedups
reaching 1.8x over a non-accelerated baseline.

Overall, we find that off-chip acceleration is beneficial when it sig-
nificantly accelerates a large portion of program execution to amortize
any offload penalties. Furthermore, while full asynchronicity among
accelerators is untenable, accelerator chaining is a practical way to
realize much of the asynchronous performance benefits.

6.3.3 Setup Time Analysis. In this study, we measure the impact
of accelerator setup time on end-to-end speedup. Figure 14 shows
the effect of setup time across the platforms under the accelerator
configurations mentioned in Section 6.3.2.We vary the setup time of
the accelerators mentioned in Section 6.2, with an 8x speedup (𝑠𝑠𝑢𝑏𝑖)
per accelerator. For Spanner and BigTable, increasing setup time
in the synchronous setups can lead to large slowdowns due to the
setup penalties applied to each accelerator invocation. Once moving
to an ideal asynchronous execution upper bound we see a large
improvement since the setup time is parallelized with accelerator
invocation. For BigQuery, we see that off-chip penalties to copy the
data dominate due to its larger working sets. Once acceleration is
on-chip, we see similar performance degradation when the setup
time is large enough.

6.3.4 Prior Accelerator Comparison. In this study, we show the
speedup gained with a subset of published on-chip accelerators

Profiling Hyperscale Big Data Processing ISCA ’23, June 17–21, 2023, Orlando, FL, USA

0.
0

0.
05 0.

1
0.

2
0.

4
0.

8

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
Spanner

Sync + Off-Chip
Sync + On-Chip

Async + On-Chip
Chained + On-Chip

0.
0

0.
05 0.

1
0.

2
0.

4
0.

8
0

1

2

3

4
BigTable

0.
0

0.
05 0.

1
0.

2
0.

4
0.

8

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
BigQuery

En
d-

to
-E

nd
 S

pe
ed

up

Setup Time (s)

Figure 14: Setup Time Sweep

M
em

. A
llo

c.
 [2

9]
Pr

ot
ob

uf
 [3

0]
(D

e)
Co

m
pr

es
s.

[6
]

RP
C

[4
3]

Co
re

 C
om

pu
te

 [6
4]

Co
m

bo
 [6

,2
9-

30
,4

3]
Co

m
bo

 [6
,2

9-
30

,4
3,

64
]

1.0

1.1

1.2

1.3

1.4

1.5

Spanner

Sync + On-Chip Chained + On-Chip

M
em

. A
llo

c.
 [2

9]
Pr

ot
ob

uf
 [3

0]
(D

e)
Co

m
pr

es
s.

[6
]

RP
C

[4
3]

Co
re

 C
om

pu
te

 [6
4]

Co
m

bo
 [6

,2
9-

30
,4

3]
Co

m
bo

 [6
,2

9-
30

,4
3,

64
]

1.0

1.1

1.2

1.3

1.4

1.5

1.6
BigTable

M
em

. A
llo

c.
 [2

9]
Pr

ot
ob

uf
 [3

0]
(D

e)
Co

m
pr

es
s.

[6
]

RP
C

[4
3]

Co
re

 C
om

pu
te

 [6
4]

Co
m

bo
 [6

,2
9-

30
,4

3]
Co

m
bo

 [6
,2

9-
30

,4
3,

64
]

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7
BigQuery

Individual and Combined Accelerators

En
d-

to
-E

nd
 S

pe
ed

up

Figure 15: Prior Accelerator Comparison

using the proposed model in a synchronous and chained setup
(Sync/Chained + On-Chip). We used the accelerators with the
largest published speedup for their respective operations for all
core compute operations [64] and the following datacenter taxes:
memory allocation [29], protobuf serialization/deserialization [30],
RPC [43], and compression/decompression [6]. For all accelerators,
we obtain the speedup (𝑡𝑠𝑢𝑏𝑖) published and maintain uniformity
by zeroing the setup time (𝑡𝑠𝑒𝑡𝑢𝑝𝑖 is 0) since the metric was not
universally reported. We see in Figure 15 that holistic synchronous
acceleration can yield a 1.5x-1.7x speedup across the data processing
platforms. When expanding to chained acceleration, we see limited
benefit since the sped up memory allocation component serves
as the critical bottleneck of the pipeline. However, as shown in
Section 6.3.2, there is a high potential for speedup if we can achieve
fully pipelined and balanced execution across the accelerator chain.

Table 8: Model Validation Results

Measured RISC-V RTL Results

Proto. Ser. 𝑡𝑠𝑢𝑏𝑖 , 𝑠𝑠𝑢𝑏𝑖 , 𝑡𝑠𝑒𝑡𝑢𝑝𝑖 518.3𝜇𝑠 , 31x, 1,488.9𝜇𝑠
SHA3 𝑡𝑠𝑢𝑏𝑖 , 𝑠𝑠𝑢𝑏𝑖 , 𝑡𝑠𝑒𝑡𝑢𝑝𝑖 1,112.5𝜇𝑠 , 51.3x, 4.1𝜇𝑠
Non-Accel. CPU 𝑡𝑠𝑢𝑏𝑖 4,948.7𝜇𝑠
Proto. Ser. 𝐵𝑖 0
Proto. Ser. 𝑡𝑑𝑒𝑝 0
SHA3 𝐵𝑖 0
SHA3 𝑡𝑑𝑒𝑝 0
Measured chained execution 𝑡 ′

𝑒2𝑒 6,075.7𝜇𝑠

Model Estimated Results

Modeled chained execution 𝑡 ′
𝑒2𝑒 6,459.3𝜇𝑠

6.4 Model Validation and Limitations
We evaluate the effectiveness of the chained model using a hetero-
geneous accelerator RISC-V system-on-chip built with the Chip-
yard RTL framework [8] and simulated using the FireSim FPGA-
accelerated RTL simulator [31]. Our evaluation contains an open-
source protobuf serialization [30] and SHA3 accelerator [50] con-
nected to separate in-order Rocket cores and a third Rocket core
without accelerators. To calculate model parameters, we built a
synthetic experiment using three Linux benchmarks built off of Hy-
perProtoBench [30], where we first serialized identical fleet-wide
representative protobuf messages then computed their SHA3 hash.
In all cases, the protobuf messages and intermediate results fit on-
chip and require no IO (𝑡𝑑𝑒𝑝 and 𝐵𝑖 are 0). We measure the 𝑡𝑠𝑢𝑏𝑖
subcomponent times of serialization, hashing, and non-accelerated
time, using a non-accelerated synchronous benchmark where all
protobufs are serialized before hashing. In the next benchmark,
we accelerate serialization and hashing and measure the speedup
(𝑠𝑠𝑢𝑏𝑖) and setup penalties (𝑡𝑠𝑒𝑡𝑢𝑝𝑖) of each accelerator. The final
benchmark then emulates chained acceleration with each acceler-
ator operating on a single element on parallel Linux threads and
is used to give an experimental end-to-end time (𝑡 ′

𝑒2𝑒) number to
compare against the model.

Table 8 shows the model parameters estimated and measured.
We see that SHA3 compute takes longer than the serialization com-
pute when both run on CPU at 1,112.5𝜇𝑠 and 518.3𝜇𝑠 , respectively.
Additionally, the overall CPU subcomponent time, 𝑡𝑠𝑢𝑏𝑖 , is over 4x
larger than either component due to initializing protobuf messages,
Linux threading and multiprocessing overheads, and measurement
overheads. Once accelerated, we see a speedup of 31x and 51.3x for
protobuf serialization and SHA3 hashing, respectively, with a lower
setup time for SHA3 hashing. This is due to protobuf serialization
needing to allocate a memory area for serialized messages. Using
these numbers we can then use Equations 9 and 10 to estimate a
chained execution time of 6,459.3𝜇𝑠 . When compared to the mea-
sured 6,075.7𝜇𝑠 , we see that the model is within a 6.1% difference,
validating the model in this one case.

While the synthetic validation setup serves as an initial scoped
implementation of software-centric accelerator chaining, future
work is needed to validate the model with additional synthetic

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Gonzalez, et al.

data, different accelerator placements, and an implementation of
hardware-centric accelerator chaining. Furthermore, while our val-
idation assumes serialization and hashing are candidates for chain-
ing, not all production code will have sequential code patterns, thus
careful identification of common sequential patterns and/or code
modifications is required for chaining viability. For simplicity, our
limit studies also only focus on fully synchronous or asynchronous
accelerators and non-CPU dependencies but can be later expanded
to cover various amounts of synchronization between CPU compo-
nents and non-CPU dependencies. Finally, while some of our limit
studies assume equivalent acceleration speedups per accelerator,
different components can have varied speedups leading to more
nuanced improvements for the platforms. Even with these limita-
tions, we believe that our validated model allows us to do complete
design space explorations of different acceleration strategies using
detailed production traces.

7 RELATEDWORK
To the best of our knowledge, our work presents the first holistic
study of big data processing platforms at a large datacenter, includ-
ing system balance, execution breakdown, and limit analysis with
a proposed chained acceleration model.

Prior Profiling Studies: Previous works [40, 54, 55] breakdown
analytical and transactional databases, identifying high instruc-
tion footprints and frontend stalls, but were limited to standard
benchmark suites. Our work differs by focusing on live produc-
tion traffic on large-scale distributed data processing, including
the relevance of datacenter taxes and high scan-aggregation ver-
sus join costs on these workloads [17]. CloudSuite and subsequent
studies [19, 66] focus on scale-out cloud service workloads, with a
focus on an open-source NoSQL database. Our work instead looks
at production SQL, NoSQL, and query engine platforms, showing
how CPU cycle utilization and microarchitectural characteristics
differ between them within both the core compute and overheads.
Additionally, we profile production workloads running live traffic
instead of open-source benchmarks due to differences in workload
structure and size. Prior work done in [44] focuses on processor
performance improvement of older commercial workloads running
on the Oracle commercial database unlike hyperscale distributed
databases in this work. Hyperscale data center providers have done
fleet-wide analysis of workloads [28, 56], but our work takes an
alternative vertical profiling approach of data processing platforms
to show the impact of core data compute and increases in datacenter
taxes within these platforms as compared to the entire fleet.

Hyperscale Hardware Accelerators: Research studies on accelera-
tor design for data center applications are prominent. Prior studies
[27, 45] focus on domains like machine learning and video process-
ing, unlike data processing in this work. Acceleration hardware
such as [1, 6, 26, 29, 30, 42, 43] target datacenter taxes within hy-
perscalers that complement our work. However, we holistically
emphasize the combination of these hardware targets with further
core compute acceleration. Studies [5, 7, 18, 21, 32, 62–64] accel-
erate database-specific kernels such as scan, aggregation, joining,
and filtering. These are relevant, but as our study points out, they
need to be taken into account in the context of larger holistic dis-
tributed systems and system balance trends. There has been very

little emphasis on optimizing query engines in a storage disag-
gregated system, with some recent work looking at system issues
primarily [65].

Sea Of Accelerator Chaining: Dataflow architectures [22, 64],
CGRAs [16, 49], VLIW architectures [46, 47], systolic array archi-
tectures [33], and vector machines [10, 48] also share similarities
to accelerator chaining. We differ in that our compute units are
larger heterogeneous accelerators chained together, and all acceler-
ation is completed and managed by hardware instead of a compiler.
This implies that the programmers would need to pass both the
operation type and their dependence information to invoke the
accelerator chain.

8 CONCLUSION
In this paper, we identify systems and hardware acceleration op-
portunities in Google’s distributed databases and analytics engines
by characterizing the major bottlenecks in their execution time. We
find that remote work and IO dominate over 52% of the end-to-end
execution time, as horizontal scaling to millions of servers depends
on distributed storage and inter-node communication. Therefore,
hardware-software co-design, which optimizes IO and remote work
in addition to compute acceleration, is critical for these platforms.
While our profiling shows that no single core compute function
accounts for most of the execution time, a “sea of accelerators”
collectively can accelerate groups of key data processing and tax
functions. Our analytical modeling demonstrates the potential gain
of a data processing sea of accelerators and analyzes the trade-offs
between various accelerator execution models. Modeling results
show that removing the CPU invocation overhead by chaining ac-
celerators can lead to over a 3x speedup in these data processing
platforms over the baseline.

We make a case for a sea of accelerators complex for hyper-
scale data processing and hope the community will explore the
architectural and software-hardware co-design space for such an
accelerator complex for future at scale systems.

ACKNOWLEDGMENTS
This work builds on prior profiling work done by several engineer-
ing teams and interns at Google (e.g., GWP, Spanner, BigTable,
BigQuery), and we would like to thank people within those teams,
including Arif Arman, Tae Jun Ham, and Yixin Luo. We would
also like to thank Andy Caldwell, Liqun Cheng, Urs Holzle, Sam
McVeety, Tipp Moseley, Fatma Ozcan, Jeff Shute, Daniel Stodolsky,
Chris Taylor, Amin Vahdat and the anonymous reviewers and ar-
tifact evaluators for their paper feedback. We would also like to
thank Tianrui Wei for validation feedback.

This research was supported by the SLICE Lab industrial spon-
sors and affiliates and by the NSF CCRI ENS Chipyard Award
#201662. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government
or any agency thereof.

Profiling Hyperscale Big Data Processing ISCA ’23, June 17–21, 2023, Orlando, FL, USA

A ARTIFACT APPENDIX
A.1 Abstract
This artifact appendix describes how to reproduce the model val-
idation results in Section 6.4. First, we will use a FireSim FPGA-
accelerated simulation of a Chipyard-based RISC-V system-on-chip
(SoC) to cycle-exactly simulate software chaining of protobuf seri-
alization with SHA3 hashing. This involves first booting Linux on
this system, then running protobuf serialization on a selected batch
of protobuf messages, followed by chaining the serialization output
with SHA3 hashing to collect performance metrics. Afterward, we
pass the obtained metrics into the provided Python implementation
of the analytical performance model given in Figures 7 and 11 to
obtain the estimated end-to-end execution time.

A.2 Artifact Checklist
• OS Environment: AWS FPGA Developer AMI 1.6.1.
• Hardware: AWS EC2 instances: 1x c5.9xlarge and 3x
f1.2xlarge instances.

• Disk Space Needed: 300GB (on EC2 instances).
• Experiments: Replicate Table 8.
• Setup time: 1.5 hours (scripted installation).
• Experiment time: 1 hour (scripted run).
• Publicly available: Yes.
• Licenses: Multiple, see downloads in Appendix Section A.3.
• Archived: See downloads in Appendix Section A.3.

A.3 Descriptions
The artifact consists of nine Git repositories stored in Zenodo
archives:

(1) firesim-protoacc-sha3-ae: Top-level FireSim simulation
environment.
(https://doi.org/10.5281/zenodo.7814284)

(2) chipyard-protoacc-sha3-ae: Chipyard RISC-V SoC gener-
ation environment.
(https://doi.org/10.5281/zenodo.7814222)

(3) rocket-chip-protoacc-sha3-ae: Rocket Chip RISC-V gen-
eration library.
(https://doi.org/10.5281/zenodo.7814238)

(4) riscv-torture-protoacc-sha3-ae: Patched RISC-V torture
tests.
(https://doi.org/10.5281/zenodo.7814265)

(5) protoacc-protoacc-sha3-ae: Protobuf accelerator design,
scripts, and software.
(https://doi.org/10.5281/zenodo.7814245)

(6) protoacc-sha3-sw: Protobuf and SHA3 accelerator chained
and unchained software used for measurements.
(https://doi.org/10.5281/zenodo.7814225)

(7) firemarshal-protoacc-sha3-ae: Linux build scripts.
(https://doi.org/10.5281/zenodo.7814260)

(8) riscv-linux-protoacc-sha3-ae: Patched Linux.
(https://doi.org/10.5281/zenodo.7814266)

(9) profiling-data-processing-model-isca23-ae: Python im-
plementation of analytical model.
(https://doi.org/10.5281/zenodo.7814235)

Users need not download the bottom eight repositories manually
since they will be obtained automatically in the download setup
scripts.

A.4 Hardware and Software Dependencies
One AWS EC2 c5.9xlarge instance (also referred to as the “man-
ager” instance), and three f1.2xlarge instances are required. The
f1.2xlarge instanceswill be launched automatically by the FireSim
manager instance. All machines will be configured to use 300GB
of disk space. To optionally run FPGA builds (see Appendix Sec-
tion A.8), you will need one z1d.6xlarge instance. However, we
provide a pre-built FPGA image to avoid the long latency (10 hours)
of building a fresh FPGA image. No software dependencies are re-
quired other than an ssh client. All other requirements are installed
by the setup scripts.

A.5 Installation
First, follow along with the instructions on the FireSim website2 to
create a manager instance on AWS EC2. You must complete up to
and including “Section 2.3.1.2: Key Setup, Part 2”, with the following
changes in “Section 2.3.1”:

(1) When instructed to launch a c5.4xlarge instance, choose a
c5.9xlarge instead.

(2) When entering the root EBS volume size, use 300GB.
(3) Do not paste any information into the “Advanced Details”

text box.
Once you have completed up to and including “Section 2.3.1.2”

in the FireSim documentation, you should have a manager instance
set up, with an IP address and key. Use ssh (or optionally mosh) to
login to the instance.

From this point forward, all commands should be run on the
manager instance that you ssh’ed into. Next, download the top-
level FireSim simulation repository, like so:

$ cd ~
Enter as a single line
$ wget -O firesim-protoacc-sha3-ae.zip https://zenodo.org/

↩→ record/7814284/files/firesim-protoacc-sha3-ae.zip
$ unzip firesim-protoacc-sha3-ae.zip
$ cd firesim-protoacc-sha3-ae

Next, run the following, which will initialize the machine and
all software requirements (i.e., downloading software packages or
installing FPGA runtime requirements). It is recommended that you
run the commandwithin screen or tmux so that any disconnections
to the manager instance do not cancel the setup:

$ cd scripts
$ sudo ./machine-launch-script.sh

To ensure that this step completed successfully, you can verify
that the machine launch script completed output is present in
the /home/centos/machine-launchstatus file. Next, make sure
to completely close all ssh/screen/tmux sessions, terminals, etc.
to the machine and re-enter the machine. Next, run the following,
which will initialize more dependencies and run basic FireSim and
Chipyard setup steps (i.e., RISC-V and host toolchain installation).
2FireSim 1.12.0 documentation: https://docs.fires.im/en/1.12.0/

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Gonzalez, et al.

Similar to before, it is also recommended to run this step within a
ssh or tmux session:

$ cd firesim-protoacc-sha3-ae
$./scripts/first-clone-setup-fast.sh

This step should take around 1.5 hours. Upon successful comple-
tion, it will print:

first-clone-setup-fast.sh complete

Once this is complete, run:

$ source sourceme-f1-manager.sh

Sourcing this file will have set up your environment to run Linux
and other SoC simulations. Finally, finish setting up your manager
by running:

$ firesim managerinit

Once completed, your manager instance is fully set up to run
protobuf and SHA3 accelerator simulations.

A.6 Experiment Workflow
Now that the environment is setup, we will run the full artifact
evaluation script, which does the following:

(1) On the manager instance, build the modified protobuf li-
brary and generate protobuf collateral needed for chained
simulation.

(2) Build three Buildroot-based Linux distributions containing
the protobuf collateral and SHA3 code needed to obtain
results. This will be booted on the accelerated system.

(3) Run the three FireSim simulations, which do the following
(each per simulation):

(a) Launch an f1.2xlarge instance.
(b) Copy simulation infrastructure to the F1 instance.
(c) Run the benchmark provided (Linux distribution created).
(d) Copy back the results to the manager instance.
(e) Terminate the f1.2xlarge instance.

(4) Parse the output results and regenerate Table 8.
Now let’s run the aforementioned full artifact evaluation script

(again, it is recommended to run this command within a screen or
tmux session):

$./full-ae.sh

This should take around 1 hour. When it completes, it prints:

Success

The FireSim manager will have automatically terminated any
instances it launched during the process, but please confirm in your
AWS EC2 management console that no instances remain beside the
manager.

A.7 Evaluation and Expected Results
Next, let’s view the output results generated from full-ae.sh in
the previous section. Once you are finished running full-ae.sh
you should be able to see the results printed to the terminal as well
as in the file final-ae-results.txt. You can print the full results
by running the following (or opening the file in a text editor):

$ cat final-ae-results.txt

You should see each of the measured values in Table 8 except
for 𝐵𝑖 and 𝑡𝑑𝑒𝑝 , which are assumed to be 0. Note that the times
measured are in nanoseconds instead of microseconds and that
the numbers are slightly different than paper numbers (within a
1% difference). This is due to a small amount of non-determinism
introduced by Linux’s measurement of time in the simulation.

Once your evaluation is complete, manually terminate your man-
ager instance in the EC2 management console and confirm that no
other instances from the evaluation process are left running.

A.8 Customization
Since the SoC is fully open-sourced and available online, users can
change the configuration of the accelerators, run further experi-
ments, or more. Please refer to the FireSim3 and Chipyard4 for more
information on how to customize the design. Tutorial slides are also
present through the FireSim website5 for more modern versions of
the tools. The core software chaining tests that are run are present
in $SW_DIR and can be customized/improved as necessary. Both the
protobuf and SHA3 accelerators are found in $GEN_DIR/protoacc
and $GEN_DIR/sha3, respectively.

If modifications are made to the RTL, users need to re-build
FPGA images. We provide a pre-built FPGA image for the de-
sign in this paper (generated from the included RTL), encoded
in the configuration files in the artifact. Re-generating the supplied
FPGA images can also be done by modifying the S3 bucket name
in $CFG_DIR/config_build.ini to an unused bucket name (that
the manager will create), then running ./buildafi.sh. This will
take around 10 hours, require one z1d.6xlarge instance, gener-
ate one new AGFI (i.e., a FPGA bitstream on EC2 F1), and place
its config_hwdb.ini entry in $BLT_DIR/<config-name>. To use
the new AGFI that was generated, replace the existing entry in
the $CFG_DIR/config_hwdb.ini file (or, for a new config, add it).
When an FPGA build completes, the FireSim manager will automat-
ically terminate the instances it launched during the build process,
but please confirm in your AWS EC2 management console that
no instances remain beside the manager. More details about the
FireSim FPGA build process can be found in the FireSim documen-
tation. Note that many of the FireSim manager build configuration
files are in a non-standard location to simplify scripting for artifact
evaluation. Open ./buildafi.sh to see their locations.

A.9 Methodology
Submission, reviewing, and badging methdology:

• https://www.acm.org/publications/policies/artifact-review-and-
badging-current

• https://github.com/mlcommons/ck/blob/master/docs/artifact-
evaluation/submission.md

• https://github.com/mlcommons/ck/blob/master/docs/artifact-
evaluation/reviewing.md

3FireSim 1.12.0 Documentation: https://docs.fires.im/en/1.12.0/
4Chipyard 1.5.0 Documentation: https://chipyard.readthedocs.io/en/1.5.0/
5FireSim HPCA 2023 Tutorial: https://fires.im/hpca-2023-tutorial/

Profiling Hyperscale Big Data Processing ISCA ’23, June 17–21, 2023, Orlando, FL, USA

REFERENCES
[1] [n. d.]. Intel® QuickAssist Technology - NGINX* Performance White Pa-

per. https://www.intel.com/content/www/us/en/content-details/767645/intel-
quickassist-technology-nginx-performance-white-paper.html

[2] 2019. MariaDB foundation. https://mariadb.org/
[3] 2020. Rethink Data Report. https://www.seagate.com/files/www-content/our-

story/rethink-data/files/Rethink_Data_Report_2020.pdf
[4] 2022. Data Lake Analytics. https://azure.microsoft.com/en-us/services/data-

lake-analytics/#overview
[5] 2022. Working with AQUA (Advanced Query Accelerator). https://docs.aws.

amazon.com/redshift/latest/mgmt/managing-cluster-aqua.html
[6] Bulent Abali, Bart Blaner, John Reilly, Matthias Klein, Ashutosh Mishra, Craig B.

Agricola, Bedri Sendir, Alper Buyuktosunoglu, Christian Jacobi, William J. Starke,
Haren Myneni, and Charlie Wang. 2020. Data Compression Accelerator on IBM
POWER9 and z15 Processors : Industrial Product. In ACM/IEEE 47th Annual
International Symposium on Computer Architecture (ISCA). 1–14. https://doi.org/
10.1109/ISCA45697.2020.00012

[7] Sandeep R Agrawal, Sam Idicula, Arun Raghavan, Evangelos Vlachos, Venka-
traman Govindaraju, Venkatanathan Varadarajan, Cagri Balkesen, Georgios Gi-
annikis, Charlie Roth, Nipun Agarwal, et al. 2017. A many-core architecture
for in-memory data processing. In Proceedings of the 50th Annual IEEE/ACM
International Symposium on Microarchitecture. 245–258.

[8] Alon Amid, David Biancolin, Abraham Gonzalez, Daniel Grubb, Sagar Karandikar,
Harrison Liew, Albert Magyar, Howard Mao, Albert Ou, Nathan Pemberton,
Paul Rigge, Colin Schmidt, John Wright, Jerry Zhao, Yakun Sophia Shao, Krste
Asanović, and Borivoje Nikolić. 2020. Chipyard: Integrated Design, Simulation,
and Implementation Framework for Custom SoCs. IEEE Micro 40, 4 (2020), 10–21.
https://doi.org/10.1109/MM.2020.2996616

[9] Michael Armbrust, Reynold S. Xin, Cheng Lian, Yin Huai, Davies Liu, Joseph K.
Bradley, Xiangrui Meng, Tomer Kaftan, Michael J. Franklin, Ali Ghodsi, and Matei
Zaharia. 2015. Spark SQL: Relational Data Processing in Spark. In Proceedings of
the 2015 ACM SIGMOD International Conference on Management of Data (Mel-
bourne, Victoria, Australia) (SIGMOD ’15). Association for Computing Machinery,
New York, NY, USA, 1383–1394. https://doi.org/10.1145/2723372.2742797

[10] Melvin C. August, Gerald M. Brost, Christopher C. Hsiung, and Alan J. Schiffleger.
1989. Cray X-MP: The birth of a supercomputer. Computer 22, 1 (1989), 45–52.

[11] David F. Bacon, Nathan Bales, Nico Bruno, Brian F. Cooper, Adam Dickinson,
Andrew Fikes, Campbell Fraser, Andrey Gubarev, Milind Joshi, Eugene Kogan,
Alexander Lloyd, Sergey Melnik, Rajesh Rao, David Shue, Christopher Taylor,
Marcel van der Holst, and DaleWoodford. 2017. Spanner: Becoming a SQL System.
In Proceedings of the 2017 ACM International Conference on Management of Data
(Chicago, Illinois, USA) (SIGMOD ’17). Association for Computing Machinery,
New York, NY, USA, 331–343. https://doi.org/10.1145/3035918.3056103

[12] Josiah Carlson. 2013. Redis in action. Simon and Schuster.
[13] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C Hsieh, Deborah A Wal-

lach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E Gruber. 2008.
Bigtable: A distributed storage system for structured data. ACM Transactions on
Computer Systems (TOCS) 26, 2 (2008), 1–26.

[14] Google Cloud. 2012. An inside look at Google BigQuery. https://cloud.google.
com/files/BigQueryTechnicalWP.pdf

[15] James C Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost,
Jeffrey John Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser,
Peter Hochschild, et al. 2013. Spanner: Google’s globally distributed database.
ACM Transactions on Computer Systems (TOCS) 31, 3 (2013), 1–22.

[16] Vidushi Dadu and Tony Nowatzki. 2022. TaskStream: accelerating task-parallel
workloads by recovering program structure. In Proceedings of the 27th ACM
International Conference on Architectural Support for Programming Languages and
Operating Systems. 1–13.

[17] Markus Dreseler, Martin Boissier, Tilmann Rabl, and Matthias Uflacker. 2020.
Quantifying TPC-H Choke Points and Their Optimizations. Proceedings of the
VLDB Endowment 13, 8 (2020), 1206–1220.

[18] Mario Drumond, Alexandros Daglis, Nooshin Mirzadeh, Dmitrii Ustiugov, Javier
Picorel, Babak Falsafi, Boris Grot, and Dionisios Pnevmatikatos. 2017. The Mon-
drian Data Engine. ACM SIGARCH Computer Architecture News 45, 2 (2017),
639–651.

[19] Michael Ferdman, Almutaz Adileh, Onur Kocberber, Stavros Volos, Mohammad
Alisafaee, Djordje Jevdjic, Cansu Kaynak, Adrian Daniel Popescu, Anastasia
Ailamaki, and Babak Falsafi. 2012. Clearing the Clouds: A Study of Emerging
Scale-out Workloads on Modern Hardware. In Proceedings of the Seventeenth
International Conference on Architectural Support for Programming Languages
and Operating Systems (London, England, UK) (ASPLOS XVII). Association for
Computing Machinery, New York, NY, USA, 37–48. https://doi.org/10.1145/
2150976.2150982

[20] Anurag Gupta, Deepak Agarwal, Derek Tan, Jakub Kulesza, Rahul Pathak, Ste-
fano Stefani, and Vidhya Srinivasan. 2015. Amazon Redshift and the Case for
Simpler Data Warehouses. In Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data (Melbourne, Victoria, Australia) (SIGMOD

’15). Association for Computing Machinery, New York, NY, USA, 1917–1923.
https://doi.org/10.1145/2723372.2742795

[21] Sebastian Haas, Oliver Arnold, Stefan Scholze, Sebastian Höppner, Georg Ellguth,
Andreas Dixius, Annett Ungethüm, Eric Mier, Benedikt Nöthen, Emil Matúš,
et al. 2016. A database accelerator for energy-efficient query processing and
optimization. In 2016 IEEE Nordic Circuits and Systems Conference (NORCAS).
IEEE, 1–5.

[22] Tae Jun Ham, Yejin Lee, Seong Hoon Seo, U Gyeong Song, Jae W Lee, David
Bruns-Smith, Brendan Sweeney, Krste Asanovic, Young H Oh, and Lisa Wu
Wills. 2021. Accelerating Genomic Data Analytics With Composable Hardware
Acceleration Framework. IEEE Micro 41, 3 (2021), 42–49.

[23] Herodotos Herodotou and Elena Kakoulli. 2019. Automating Distributed Tiered
Storage Management in Cluster Computing. Proc. VLDB Endow. 13, 1 (sep 2019),
43–56. https://doi.org/10.14778/3357377.3357381

[24] Mark DHill and Vijay Janapa Reddi. 2021. Accelerator-level parallelism. Commun.
ACM 64, 12 (2021), 36–38.

[25] S Idreos, F Groffen, N Nes, S Manegold, S Mullender, and M Kersten. 2012. Mon-
etdb: Two decades of research in column-oriented database. IEEEData Engineering
Bulletin 35, 1 (2012), 40–45.

[26] Jaeyoung Jang, Sung Jun Jung, Sunmin Jeong, Jun Heo, Hoon Shin, Tae Jun Ham,
and Jae W Lee. 2020. A Specialized Architecture for Object Serialization with
Applications to Big Data Analytics. In 2020 ACM/IEEE 47th Annual International
Symposium on Computer Architecture (ISCA). IEEE, 322–334.

[27] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,
Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick
Boyle, Pierre luc Cantin, Clifford Chao, Chris Clark, Jeremy Coriell, Mike Da-
ley, Matt Dau, Jeffrey Dean, Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra
Gottipati, William Gulland, Robert Hagmann, C. Richard Ho, Doug Hogberg,
John Hu, Robert Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski,
Alexander Kaplan, Harshit Khaitan, Andy Koch, Naveen Kumar, Steve Lacy,
James Laudon, James Law, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle Lucke,
Alan Lundin, Gordon MacKean, Adriana Maggiore, Maire Mahony, Kieran
Miller, Rahul Nagarajan, Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas
Norrie, Mark Omernick, Narayana Penukonda, Andy Phelps, and Jonathan
Ross. 2017. In-Datacenter Performance Analysis of a Tensor Processing Unit.
https://arxiv.org/pdf/1704.04760.pdf

[28] Svilen Kanev, Juan Pablo Darago, Kim Hazelwood, Parthasarathy Ranganathan,
Tipp Moseley, Gu-Yeon Wei, and David Brooks. 2015. Profiling a warehouse-
scale computer. In Proceedings of the 42nd Annual International Symposium on
Computer Architecture. 158–169.

[29] Svilen Kanev, Sam Likun Xi, Gu-Yeon Wei, and David Brooks. 2017. Mallacc:
Accelerating Memory Allocation. ACM SIGPLAN Notices 52, 4 (2017), 33–45.

[30] Sagar Karandikar, Chris Leary, Chris Kennelly, Jerry Zhao, Dinesh Parimi,
Borivoje Nikolic, Krste Asanovic, and Parthasarathy Ranganathan. 2021. A
Hardware Accelerator for Protocol Buffers. In MICRO-54: 54th Annual IEEE/ACM
International Symposium on Microarchitecture. 462–478.

[31] Sagar Karandikar, Howard Mao, Donggyu Kim, David Biancolin, Alon Amid,
Dayeol Lee, Nathan Pemberton, Emmanuel Amaro, Colin Schmidt, Aditya Chopra,
et al. 2018. FireSim: FPGA-accelerated Cycle-Exact Scale-Out System Simulation
in the Public Cloud. In 2018 ACM/IEEE 45th Annual International Symposium on
Computer Architecture (ISCA). IEEE, 29–42.

[32] Onur Kocberber, Boris Grot, Javier Picorel, Babak Falsafi, Kevin Lim, and
Parthasarathy Ranganathan. 2013. Meet the Walkers: Accelerating Index Tra-
versals for In-Memory Databases. In Proceedings of the 46th Annual IEEE/ACM
International Symposium on Microarchitecture. 468–479.

[33] Hsiang-Tsung Kung. 1982. Why systolic architectures? Computer 15, 01 (1982),
37–46.

[34] Kevin Lim, Jichuan Chang, Trevor Mudge, Parthasarathy Ranganathan, Steven K.
Reinhardt, and Thomas F. Wenisch. 2009. Disaggregated Memory for Expansion
and Sharing in Blade Servers. In Proceedings of the 36th Annual International
Symposium on Computer Architecture (Austin, TX, USA) (ISCA ’09). Association
for Computing Machinery, New York, NY, USA, 267–278. https://doi.org/10.
1145/1555754.1555789

[35] Bernard Marr. 2019. How much data do we create every day? the mind-blowing
stats everyone should read. https://www.forbes.com/sites/bernardmarr/2018/
05/21/how-much-data-do-we-create-every-day-the-mind-blowing-stats-
everyone-should-read/?sh=7461a6c060ba

[36] Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva Shiv-
akumar, Matt Tolton, and Theo Vassilakis. 2010. Dremel: interactive analysis of
web-scale datasets. Proceedings of the VLDB Endowment 3, 1-2 (2010), 330–339.

[37] Bruce Momjian. 2001. PostgreSQL: introduction and concepts. Vol. 192. Addison-
Wesley New York.

[38] Arvind Narayanan, Saurabh Verma, Eman Ramadan, Pariya Babaie, and Zhi-
Li Zhang. 2018. DeepCache: A Deep Learning Based Framework For Content
Caching. In Proceedings of the 2018Workshop on NetworkMeets AI &ML (Budapest,
Hungary) (NetAI’18). Association for Computing Machinery, New York, NY, USA,
48–53. https://doi.org/10.1145/3229543.3229555

[39] Mike Owens. 2006. The definitive guide to SQLite. Apress.

https://www.intel.com/content/www/us/en/content-details/767645/intel-quickassist-technology-nginx-performance-white-paper.html
https://www.intel.com/content/www/us/en/content-details/767645/intel-quickassist-technology-nginx-performance-white-paper.html
https://mariadb.org/
https://www.seagate.com/files/www-content/our-story/rethink-data/files/Rethink_Data_Report_2020.pdf
https://www.seagate.com/files/www-content/our-story/rethink-data/files/Rethink_Data_Report_2020.pdf
https://azure.microsoft.com/en-us/services/data-lake-analytics/#overview
https://azure.microsoft.com/en-us/services/data-lake-analytics/#overview
https://docs.aws.amazon.com/redshift/latest/mgmt/managing-cluster-aqua.html
https://docs.aws.amazon.com/redshift/latest/mgmt/managing-cluster-aqua.html
https://doi.org/10.1109/ISCA45697.2020.00012
https://doi.org/10.1109/ISCA45697.2020.00012
https://doi.org/10.1109/MM.2020.2996616
https://doi.org/10.1145/2723372.2742797
https://doi.org/10.1145/3035918.3056103
https://cloud.google.com/files/BigQueryTechnicalWP.pdf
https://cloud.google.com/files/BigQueryTechnicalWP.pdf
https://doi.org/10.1145/2150976.2150982
https://doi.org/10.1145/2150976.2150982
https://doi.org/10.1145/2723372.2742795
https://doi.org/10.14778/3357377.3357381
https://arxiv.org/pdf/1704.04760.pdf
https://doi.org/10.1145/1555754.1555789
https://doi.org/10.1145/1555754.1555789
https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/?sh=7461a6c060ba
https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/?sh=7461a6c060ba
https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/?sh=7461a6c060ba
https://doi.org/10.1145/3229543.3229555

ISCA ’23, June 17–21, 2023, Orlando, FL, USA Gonzalez, et al.

[40] Reena Panda, Christopher Erb, Michael Lebeane, Jee Ho Ryoo, and Lizy Kurian
John. 2015. Performance characterization of modern databases on out-of-order
cpus. In 2015 27th International Symposium on Computer Architecture and High
Performance Computing (SBAC-PAD). IEEE, 114–121.

[41] Pedro Pedreira, Chris Croswhite, and Luis Bona. 2016. Cubrick: Indexing Mil-
lions of Records per Second for Interactive Analytics. Proceedings of the VLDB
Endowment 9, 13 (2016), 1305–1316.

[42] Arash Pourhabibi, Siddharth Gupta, Hussein Kassir, Mark Sutherland, Zilu Tian,
Mario Paulo Drumond, Babak Falsafi, and Christoph Koch. 2020. Optimus prime:
Accelerating data transformation in servers. In Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming Languages and
Operating Systems. 1203–1216.

[43] Arash Pourhabibi, Mark Sutherland, Alexandros Daglis, and Babak Falsafi. 2021.
Cerebros: Evading the RPC Tax in Datacenters. In MICRO-54: 54th Annual
IEEE/ACM International Symposium on Microarchitecture. 407–420.

[44] Parthasarathy Ranganathan, Kourosh Gharachorloo, Sarita V. Adve, and Luiz An-
dré Barroso. 1998. Performance of Database Workloads on Shared-Memory
Systems with out-of-Order Processors. In Proceedings of the Eighth International
Conference on Architectural Support for Programming Languages and Operating
Systems (San Jose, California, USA) (ASPLOS VIII). Association for Computing
Machinery, New York, NY, USA, 307–318. https://doi.org/10.1145/291069.291067

[45] Parthasarathy Ranganathan, Daniel Stodolsky, Jeff Calow, Jeremy Dorfman,
Marisabel Guevara, Clinton Wills Smullen IV, Aki Kuusela, Raghu Balasubrama-
nian, Sandeep Bhatia, Prakash Chauhan, Anna Cheung, In Suk Chong, Niranjani
Dasharathi, Jia Feng, Brian Fosco, Samuel Foss, Ben Gelb, Sara J. Gwin, Yoshiaki
Hase, Da-ke He, C. Richard Ho, Roy W. Huffman Jr., Elisha Indupalli, Indira Ja-
yaram, Poonacha Kongetira, Cho Mon Kyaw, Aaron Laursen, Yuan Li, Fong Lou,
Kyle A. Lucke, JP Maaninen, Ramon Macias, Maire Mahony, David Alexander
Munday, Srikanth Muroor, Narayana Penukonda, Eric Perkins-Argueta, Devin
Persaud, Alex Ramirez, Ville-Mikko Rautio, Yolanda Ripley, Amir Salek, Sathish
Sekar, Sergey N. Sokolov, Rob Springer, Don Stark, Mercedes Tan, Mark S. Wach-
sler, Andrew C. Walton, David A. Wickeraad, Alvin Wijaya, and Hon Kwan Wu.
2021. Warehouse-Scale Video Acceleration: Co-Design and Deployment in the
Wild. In Proceedings of the 26th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (Virtual, USA) (ASP-
LOS 2021). Association for Computing Machinery, New York, NY, USA, 600–615.
https://doi.org/10.1145/3445814.3446723

[46] B.R. Rau. 1988. Cydra 5 directed dataflow architecture. In Digest of Papers.
COMPCON Spring 88 Thirty-Third IEEE Computer Society International Conference.
106–113. https://doi.org/10.1109/CMPCON.1988.4840

[47] B. Ramakrishna Rau, David W. L. Yen, Wei Yen, and Ross A. Towle. 1989. The
Cydra 5 departmental supercomputer: Design philosophies, decisions, and trade-
offs. Computer 22, 1 (1989), 12–35.

[48] Richard M Russell. 1978. The CRAY-1 computer system. Commun. ACM 21, 1
(1978), 63–72.

[49] Karthikeyan Sankaralingam, Tony Nowatzki, Vinay Gangadhar, Preyas Shah,
Michael Davies, William Galliher, Ziliang Guo, Jitu Khare, Deepak Vijay, Poly
Palamuttam, et al. 2022. The Mozart Reuse Exposed Dataflow Processor for AI
and Beyond. (2022).

[50] Colin Schmidt and Adam Izraelevitz. 2015. A fast parameterized sha3 accelerator.
In tech. rep. EECS Department, University of California.

[51] Yakun Sophia Shao, Brandon Reagen, Gu-Yeon Wei, and David Brooks. 2014.
Aladdin: A pre-rtl, power-performance accelerator simulator enabling large

design space exploration of customized architectures. In 2014 ACM/IEEE 41st
International Symposium on Computer Architecture (ISCA). IEEE, 97–108.

[52] Benjamin H Sigelman, Luiz Andre Barroso, Mike Burrows, Pat Stephenson, Manoj
Plakal, Donald Beaver, Saul Jaspan, and Chandan Shanbhag. 2010. Dapper, a
large-scale distributed systems tracing infrastructure. (2010).

[53] Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson, Ashby Armistead, Roy
Bannon, Seb Boving, Gaurav Desai, Bob Felderman, Paulie Germano, Anand
Kanagala, Hong Liu, Jeff Provost, Jason Simmons, Eiichi Tanda, Jim Wanderer,
Urs Hölzle, Stephen Stuart, and Amin Vahdat. 2016. Jupiter Rising: A Decade
of Clos Topologies and Centralized Control in Google’s Datacenter Network.
Commun. ACM 59, 9 (aug 2016), 88–97. https://doi.org/10.1145/2975159

[54] Utku Sirin and Anastasia Ailamaki. 2019. Micro-architectural analysis of OLAP:
limitations and opportunities. arXiv preprint arXiv:1908.04718 (2019).

[55] Utku Sirin, Pinar Tözün, Danica Porobic, and Anastasia Ailamaki. 2016. Micro-
architectural Analysis of In-memory OLTP. In Proceedings of the 2016 International
Conference on Management of Data. 387–402.

[56] Akshitha Sriraman and Abhishek Dhanotia. 2020. Accelerometer: Understanding
Acceleration Opportunities for Data Center Overheads at Hyperscale. Association
for Computing Machinery, New York, NY, USA, 733–750. https://doi.org/10.
1145/3373376.3378450

[57] Tiffany Trader. 2022. AMD’s Genoa CPUs Offer Up to 96 5nm Cores Across 12
Chiplets. https://www.hpcwire.com/2022/11/10/amds-4th-gen-epyc-genoa-96-
5nm-cores-across-12-compute-chiplets/

[58] Alexandre Verbitski, Anurag Gupta, Debanjan Saha, Murali Brahmadesam,
Kamal Gupta, Raman Mittal, Sailesh Krishnamurthy, Sandor Maurice, Tengiz
Kharatishvili, and Xiaofeng Bao. 2017. Amazon Aurora: Design Considerations
for High Throughput Cloud-Native Relational Databases. In Proceedings of the
2017 ACM International Conference on Management of Data (Chicago, Illinois,
USA) (SIGMOD ’17). Association for Computing Machinery, New York, NY, USA,
1041–1052. https://doi.org/10.1145/3035918.3056101

[59] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu, David Oppenheimer, Eric
Tune, and John Wilkes. 2015. Large-scale cluster management at Google with
Borg. In Proceedings of the Tenth European Conference on Computer Systems. 1–17.

[60] Deepak Vohra. 2016. Apache parquet. In Practical Hadoop Ecosystem. Springer,
325–335.

[61] Michael Widenius and David Axmark. 2002. MySQL reference manual: documen-
tation from the source. " O’Reilly Media, Inc.".

[62] Louis Woods, Zsolt István, and Gustavo Alonso. 2014. Ibex: An intelligent stor-
age engine with support for advanced sql offloading. Proceedings of the VLDB
Endowment 7, 11 (2014), 963–974.

[63] Lisa Wu, Raymond J Barker, Martha A Kim, and Kenneth A Ross. 2013. Navi-
gating Big Data with High-Throughput, Energy-Efficient Data Partitioning. In
Proceedings of the 40th Annual International Symposium on Computer Architecture.
249–260.

[64] Lisa Wu, Andrea Lottarini, Timothy K Paine, Martha A Kim, and Kenneth A Ross.
2014. Q100: The architecture and design of a database processing unit. ACM
SIGARCH Computer Architecture News 42, 1 (2014), 255–268.

[65] Yifei Yang, Matt Youill, MatthewWoicik, Yizhou Liu, Xiangyao Yu, Marco Serafini,
Ashraf Aboulnaga, and Michael Stonebraker. 2021. Flexpushdowndb: Hybrid
pushdown and caching in a cloud DBMS. Proceedings of the VLDB Endowment
14, 11 (2021), 2101–2113.

[66] Ahmad Yasin, Yosi Ben-Asher, and Avi Mendelson. 2014. Deep-dive analysis of
the data analytics workload in cloudsuite. In 2014 IEEE International Symposium
on Workload Characterization (IISWC). IEEE, 202–211.

https://doi.org/10.1145/291069.291067
https://doi.org/10.1145/3445814.3446723
https://doi.org/10.1109/CMPCON.1988.4840
https://doi.org/10.1145/2975159
https://doi.org/10.1145/3373376.3378450
https://doi.org/10.1145/3373376.3378450
https://www.hpcwire.com/2022/11/10/amds-4th-gen-epyc-genoa-96-5nm-cores-across-12-compute-chiplets/
https://www.hpcwire.com/2022/11/10/amds-4th-gen-epyc-genoa-96-5nm-cores-across-12-compute-chiplets/
https://doi.org/10.1145/3035918.3056101

	Abstract
	1 Introduction
	2 Google Big Data Processing
	2.1 Characteristics of Production Systems
	2.2 Big Data Processing Overview
	2.3 Goals

	3 System Balance
	4 End-to-End Execution Time Breakdown
	4.1 Methodology
	4.2 Time Breakdown

	5 CPU Execution Time Breakdown
	5.1 Methodology
	5.2 Node-level Breakdown
	5.3 Core Compute
	5.4 Datacenter Taxes
	5.5 System Taxes and Combined Acceleration
	5.6 Microarchitectural Characterization

	6 Sea of Accelerators: Limits Study
	6.1 Base Model
	6.2 On-Chip Acceleration Limit Studies
	6.3 Accelerator System Features Limit Study
	6.4 Model Validation and Limitations

	7 Related Work
	8 Conclusion
	Acknowledgments
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact Checklist
	A.3 Descriptions
	A.4 Hardware and Software Dependencies
	A.5 Installation
	A.6 Experiment Workflow
	A.7 Evaluation and Expected Results
	A.8 Customization
	A.9 Methodology

	References

